1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
--[[
Radioactivity
Radiation resistance represents the extent to which a material
attenuates radiation passing through it; i.e., how good a radiation
shield it is. This is identified per node type. For materials that
exist in real life, the radiation resistance value that this system
uses for a node type consisting of a solid cube of that material is the
(approximate) number of halvings of ionising radiation that is achieved
by a meter of the material in real life. This is approximately
proportional to density, which provides a good way to estimate it.
Homogeneous mixtures of materials have radiation resistance computed
by a simple weighted mean. Note that the amount of attenuation that
a material achieves in-game is not required to be (and is not) the
same as the attenuation achieved in real life.
Radiation resistance for a node type may be specified in the node
definition, under the key "radiation_resistance". As an interim
measure, until node definitions widely include this, this code
knows a bunch of values for particular node types in several mods,
and values for groups of node types. The node definition takes
precedence if it specifies a value. Nodes for which no value at
all is known are taken to provide no radiation resistance at all;
this is appropriate for the majority of node types. Only node types
consisting of a fairly homogeneous mass of material should report
non-zero radiation resistance; anything with non-uniform geometry
or complex internal structure should show no radiation resistance.
Fractional resistance values are permitted.
--]]
local S = technic.getter
local rad_resistance_node = {
["default:brick"] = 13,
["default:bronzeblock"] = 45,
["default:clay"] = 15,
["default:coalblock"] = 9.6,
["default:cobble"] = 15,
["default:copperblock"] = 46,
["default:desert_cobble"] = 15,
["default:desert_sand"] = 10,
["default:desert_stone"] = 17,
["default:desert_stonebrick"] = 17,
["default:diamondblock"] = 24,
["default:dirt"] = 8.2,
["default:dirt_with_grass"] = 8.2,
["default:dirt_with_grass_footsteps"] = 8.2,
["default:dirt_with_snow"] = 8.2,
["default:glass"] = 17,
["default:goldblock"] = 170,
["default:gravel"] = 10,
["default:ice"] = 5.6,
["default:lava_flowing"] = 8.5,
["default:lava_source"] = 17,
["default:mese"] = 21,
["default:mossycobble"] = 15,
["default:nyancat"] = 1000,
["default:nyancat_rainbow"] = 1000,
["default:obsidian"] = 18,
["default:obsidian_glass"] = 18,
["default:sand"] = 10,
["default:sandstone"] = 15,
["default:sandstonebrick"] = 15,
["default:snowblock"] = 1.7,
["default:steelblock"] = 40,
["default:stone"] = 17,
["default:stone_with_coal"] = 16,
["default:stone_with_copper"] = 20,
["default:stone_with_diamond"] = 18,
["default:stone_with_gold"] = 34,
["default:stone_with_iron"] = 20,
["default:stone_with_mese"] = 17,
["default:stonebrick"] = 17,
["default:water_flowing"] = 2.8,
["default:water_source"] = 5.6,
["farming:desert_sand_soil"] = 10,
["farming:desert_sand_soil_wet"] = 10,
["farming:soil"] = 8.2,
["farming:soil_wet"] = 8.2,
["glooptest:akalin_crystal_glass"] = 21,
["glooptest:akalinblock"] = 40,
["glooptest:alatro_crystal_glass"] = 21,
["glooptest:alatroblock"] = 40,
["glooptest:amethystblock"] = 18,
["glooptest:arol_crystal_glass"] = 21,
["glooptest:crystal_glass"] = 21,
["glooptest:emeraldblock"] = 19,
["glooptest:heavy_crystal_glass"] = 21,
["glooptest:mineral_akalin"] = 20,
["glooptest:mineral_alatro"] = 20,
["glooptest:mineral_amethyst"] = 17,
["glooptest:mineral_arol"] = 20,
["glooptest:mineral_desert_coal"] = 16,
["glooptest:mineral_desert_iron"] = 20,
["glooptest:mineral_emerald"] = 17,
["glooptest:mineral_kalite"] = 20,
["glooptest:mineral_ruby"] = 18,
["glooptest:mineral_sapphire"] = 18,
["glooptest:mineral_talinite"] = 20,
["glooptest:mineral_topaz"] = 18,
["glooptest:reinforced_crystal_glass"] = 21,
["glooptest:rubyblock"] = 27,
["glooptest:sapphireblock"] = 27,
["glooptest:talinite_crystal_glass"] = 21,
["glooptest:taliniteblock"] = 40,
["glooptest:topazblock"] = 24,
["mesecons_extrawires:mese_powered"] = 21,
["moreblocks:cactus_brick"] = 13,
["moreblocks:cactus_checker"] = 8.5,
["moreblocks:circle_stone_bricks"] = 17,
["moreblocks:clean_glass"] = 17,
["moreblocks:coal_checker"] = 9.0,
["moreblocks:coal_glass"] = 17,
["moreblocks:coal_stone"] = 17,
["moreblocks:coal_stone_bricks"] = 17,
["moreblocks:glow_glass"] = 17,
["moreblocks:grey_bricks"] = 15,
["moreblocks:iron_checker"] = 11,
["moreblocks:iron_glass"] = 17,
["moreblocks:iron_stone"] = 17,
["moreblocks:iron_stone_bricks"] = 17,
["moreblocks:plankstone"] = 9.3,
["moreblocks:split_stone_tile"] = 15,
["moreblocks:split_stone_tile_alt"] = 15,
["moreblocks:stone_tile"] = 15,
["moreblocks:super_glow_glass"] = 17,
["moreblocks:tar"] = 7.0,
["moreblocks:wood_tile"] = 1.7,
["moreblocks:wood_tile_center"] = 1.7,
["moreblocks:wood_tile_down"] = 1.7,
["moreblocks:wood_tile_flipped"] = 1.7,
["moreblocks:wood_tile_full"] = 1.7,
["moreblocks:wood_tile_left"] = 1.7,
["moreblocks:wood_tile_right"] = 1.7,
["moreblocks:wood_tile_up"] = 1.7,
["moreores:mineral_mithril"] = 18,
["moreores:mineral_silver"] = 21,
["moreores:mineral_tin"] = 19,
["moreores:mithril_block"] = 26,
["moreores:silver_block"] = 53,
["moreores:tin_block"] = 37,
["snow:snow_brick"] = 2.8,
["technic:brass_block"] = 43,
["technic:carbon_steel_block"] = 40,
["technic:cast_iron_block"] = 40,
["technic:chernobylite_block"] = 40,
["technic:chromium_block"] = 37,
["technic:corium_flowing"] = 40,
["technic:corium_source"] = 80,
["technic:granite"] = 18,
["technic:lead_block"] = 80,
["technic:marble"] = 18,
["technic:marble_bricks"] = 18,
["technic:mineral_chromium"] = 19,
["technic:mineral_uranium"] = 71,
["technic:mineral_zinc"] = 19,
["technic:stainless_steel_block"] = 40,
["technic:zinc_block"] = 36,
["tnt:tnt"] = 11,
["tnt:tnt_burning"] = 11,
}
local rad_resistance_group = {
concrete = 16,
tree = 3.4,
uranium_block = 500,
wood = 1.7,
}
local cache_radiation_resistance = {}
local function node_radiation_resistance(node_name)
local resistance = cache_radiation_resistance[node_name]
if resistance then
return resistance
end
local def = minetest.registered_nodes[node_name]
if not def then
cache_radiation_resistance[node_name] = 0
return 0
end
resistance = def.radiation_resistance or
rad_resistance_node[node_name]
if not resistance then
resistance = 0
for g, v in pairs(def.groups) do
if v > 0 and rad_resistance_group[g] then
resistance = resistance + rad_resistance_group[g]
end
end
end
resistance = math.sqrt(resistance)
cache_radiation_resistance[node_name] = resistance
return resistance
end
--[[
Radioactive nodes cause damage to nearby players. The damage
effect depends on the intrinsic strength of the radiation source,
the distance between the source and the player, and the shielding
effect of the intervening material. These determine a rate of damage;
total damage caused is the integral of this over time.
In the absence of effective shielding, for a specific source the
damage rate varies realistically in inverse proportion to the square
of the distance. (Distance is measured to the player's abdomen,
not to the nominal player position which corresponds to the foot.)
However, if the player is inside a non-walkable (liquid or gaseous)
radioactive node, the nominal distance could go to zero, yielding
infinite damage. In that case, the player's body is displacing the
radioactive material, so the effective distance should remain non-zero.
We therefore apply a lower distance bound of sqrt(0.75), which is
the maximum distance one can get from the node center within the node.
A radioactive node is identified by being in the "radioactive" group,
and the group value signifies the strength of the radiation source.
The group value is the distance from a node at which an unshielded
player will be damaged by 1 HP/s. Or, equivalently, it is the square
root of the damage rate in HP/s that an unshielded player one node
away will take.
Shielding is assessed by adding the shielding values of all nodes
between the source node and the player, ignoring the source node itself.
As in reality, shielding causes exponential attenuation of radiation.
However, the effect is scaled down relative to real life. A node with
radiation resistance value R yields attenuation of sqrt(R) * 0.1 nepers.
(In real life it would be about R * 0.69 nepers, by the definition
of the radiation resistance values.) The sqrt part of this formula
scales down the differences between shielding types, reflecting the
game's simplification of making expensive materials such as gold
readily available in cubes. The multiplicative factor in the
formula scales down the difference between shielded and unshielded
safe distances, avoiding the latter becoming impractically large.
Damage is processed at rates down to 0.2 HP/s, which in the absence of
shielding is attained at the distance specified by the "radioactive"
group value. Computed damage rates below 0.2 HP/s result in no
damage at all to the player. This gives the player an opportunity
to be safe, and limits the range at which source/player interactions
need to be considered.
--]]
local abdomen_offset = 1
local cache_scaled_shielding = {}
local rad_dmg_cutoff = 0.2
local radiated_players = {}
local function apply_fractional_damage(o, dmg)
local dmg_int = math.floor(dmg)
-- The closer you are to getting one more damage point,
-- the more likely it will be added.
if math.random() < dmg - dmg_int then
dmg_int = dmg_int + 1
end
if dmg_int > 0 then
local new_hp = math.max(o:get_hp() - dmg_int, 0)
o:set_hp(new_hp)
return new_hp == 0
end
return false
end
local function dmg_player(pos, player, strength)
local pl_pos = player:getpos()
pl_pos.y = pl_pos.y + abdomen_offset
local shielding = 0
local dist = vector.distance(pos, pl_pos)
for ray_pos in technic.trace_node_ray(pos,
vector.direction(pos, pl_pos), dist) do
local shield_name = minetest.get_node(ray_pos).name
shielding = shielding + node_radiation_resistance(shield_name) * 0.1
end
local dmg = (strength * strength) /
(math.max(0.75, dist * dist) * math.exp(shielding))
if dmg < rad_dmg_cutoff then return end
apply_fractional_damage(player, dmg)
local pn = player:get_player_name()
radiated_players[pn] = (radiated_players[pn] or 0) + dmg
end
local rad_dmg_mult_sqrt = math.sqrt(1 / rad_dmg_cutoff)
local function dmg_abm(pos, node)
local strength = minetest.get_item_group(node.name, "radioactive")
local max_dist = strength * rad_dmg_mult_sqrt
for _, o in pairs(minetest.get_objects_inside_radius(pos,
max_dist + abdomen_offset)) do
if o:is_player() then
dmg_player(pos, o, strength)
end
end
end
if minetest.setting_getbool("enable_damage") then
minetest.register_abm({
nodenames = {"group:radioactive"},
interval = 1,
chance = 1,
action = dmg_abm,
})
minetest.register_globalstep(function(dtime)
for pn, dmg in pairs(radiated_players) do
dmg = dmg - (dtime / 8)
local player = minetest.get_player_by_name(pn)
local killed
if player and dmg > rad_dmg_cutoff then
killed = apply_fractional_damage(player, (dmg * dtime) / 8)
else
dmg = nil
end
-- on_dieplayer will have already set this if the player died
if not killed then
radiated_players[pn] = dmg
end
end
end)
minetest.register_on_dieplayer(function(player)
radiated_players[player:get_player_name()] = nil
end)
end
-- Radioactive materials that can result from destroying a reactor
local griefing = technic.config:get_bool("enable_corium_griefing")
for _, state in pairs({"flowing", "source"}) do
minetest.register_node("technic:corium_"..state, {
description = S(state == "source" and "Corium Source" or "Flowing Corium"),
drawtype = (state == "source" and "liquid" or "flowingliquid"),
[state == "source" and "tiles" or "special_tiles"] = {{
name = "technic_corium_"..state.."_animated.png",
animation = {
type = "vertical_frames",
aspect_w = 16,
aspect_h = 16,
length = 3.0,
},
}},
paramtype = "light",
paramtype2 = (state == "flowing" and "flowingliquid" or nil),
light_source = (state == "source" and 8 or 5),
walkable = false,
pointable = false,
diggable = false,
buildable_to = true,
drop = "",
drowning = 1,
liquidtype = state,
liquid_alternative_flowing = "technic:corium_flowing",
liquid_alternative_source = "technic:corium_source",
liquid_viscosity = LAVA_VISC,
liquid_renewable = false,
damage_per_second = 6,
post_effect_color = {a=192, r=80, g=160, b=80},
groups = {
liquid = 2,
hot = 3,
igniter = (griefing and 1 or 0),
radioactive = (state == "source" and 12 or 6),
not_in_creative_inventory = (state == "flowing" and 1 or nil),
},
})
end
if rawget(_G, "bucket") and bucket.register_liquid then
bucket.register_liquid(
"technic:corium_source",
"technic:corium_flowing",
"technic:bucket_corium",
"technic_bucket_corium.png",
"Corium Bucket"
)
end
minetest.register_node("technic:chernobylite_block", {
description = S("Chernobylite Block"),
tiles = {"technic_chernobylite_block.png"},
is_ground_content = true,
groups = {cracky=1, radioactive=4, level=2},
sounds = default.node_sound_stone_defaults(),
light_source = 2,
})
minetest.register_abm({
nodenames = {"group:water"},
neighbors = {"technic:corium_source"},
interval = 1,
chance = 1,
action = function(pos, node)
minetest.remove_node(pos)
end,
})
minetest.register_abm({
nodenames = {"technic:corium_flowing"},
neighbors = {"group:water"},
interval = 1,
chance = 1,
action = function(pos, node)
minetest.set_node(pos, {name="technic:chernobylite_block"})
end,
})
minetest.register_abm({
nodenames = {"technic:corium_flowing"},
interval = 5,
chance = (griefing and 10 or 1),
action = function(pos, node)
minetest.set_node(pos, {name="technic:chernobylite_block"})
end,
})
if griefing then
minetest.register_abm({
nodenames = {"technic:corium_source", "technic:corium_flowing"},
interval = 4,
chance = 4,
action = function(pos, node)
for _, offset in ipairs({
vector.new(1,0,0),
vector.new(-1,0,0),
vector.new(0,0,1),
vector.new(0,0,-1),
vector.new(0,-1,0),
}) do
if math.random(8) == 1 then
minetest.dig_node(vector.add(pos, offset))
end
end
end,
})
end
|