summaryrefslogtreecommitdiff
path: root/technic/machines/switching_station.lua
blob: f7ec0b69ca554135ba3090fe183c0049e78638dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
-- SWITCHING STATION
-- The switching station is the center of all power distribution on an electric network.
--
-- The station collects power from sources (PR), distributes it to sinks (RE),
-- and uses the excess/shortfall to charge and discharge batteries (BA).
--
-- For now, all supply and demand values are expressed in kW.
--
-- It works like this:
--  All PR,BA,RE nodes are indexed and tagged with the switching station.
-- The tagging is to allow more stations to be built without allowing a cheat
-- with duplicating power.
--  All the RE nodes are queried for their current EU demand. Those which are off
-- would require no or a small standby EU demand, while those which are on would
-- require more.
-- If the total demand is less than the available power they are all updated with the
-- demand number.
-- If any surplus exists from the PR nodes the batteries will be charged evenly with this.
-- If the total demand requires draw on the batteries they will be discharged evenly.
--
-- If the total demand is more than the available power all RE nodes will be shut down.
-- We have a brown-out situation.
--
-- Hence all the power distribution logic resides in this single node.
--
--  Nodes connected to the network will have one or more of these parameters as meta data:
--   <LV|MV|HV>_EU_supply : Exists for PR and BA node types. This is the EU value supplied by the node. Output
--   <LV|MV|HV>_EU_demand : Exists for RE and BA node types. This is the EU value the node requires to run. Output
--   <LV|MV|HV>_EU_input  : Exists for RE and BA node types. This is the actual EU value the network can give the node. Input
--
--  The reason the LV|MV|HV type is prepended toe meta data is because some machine could require several supplies to work.
--  This way the supplies are separated per network.

technic.networks = {}

local S = technic.getter

minetest.register_craft({
	output = "technic:switching_station",
	recipe = {
		{"",                     "technic:lv_transformer", ""},
		{"default:copper_ingot", "technic:machine_casing", "default:copper_ingot"},
		{"technic:lv_cable",     "technic:lv_cable",       "technic:lv_cable"}
	}
})

minetest.register_node("technic:switching_station",{
	description = S("Switching Station"),
	tiles  = {"technic_water_mill_top_active.png", "technic_water_mill_top_active.png",
                  "technic_water_mill_top_active.png", "technic_water_mill_top_active.png",
	          "technic_water_mill_top_active.png", "technic_water_mill_top_active.png"},
	groups = {snappy=2, choppy=2, oddly_breakable_by_hand=2, technic_all_tiers=1},
	connect_sides = {"bottom"},
	sounds = default.node_sound_wood_defaults(),
	on_construct = function(pos)
		local meta = minetest.get_meta(pos)
		meta:set_string("infotext", S("Switching Station"))
		meta:set_string("active", 1)
	end,
})

--------------------------------------------------
-- Functions to traverse the electrical network
--------------------------------------------------

-- Add a wire node to the LV/MV/HV network
local add_new_cable_node = function(nodes, pos)
	-- Ignore if the node has already been added
	for i = 1, #nodes do
		if pos.x == nodes[i].x and
		   pos.y == nodes[i].y and
		   pos.z == nodes[i].z then
			return false
		end
	end
	table.insert(nodes, {x=pos.x, y=pos.y, z=pos.z, visited=1})
	return true
end

-- Generic function to add found connected nodes to the right classification array
local check_node_subp = function(PR_nodes, RE_nodes, BA_nodes, SP_nodes, all_nodes, pos, machines, tier, sw_pos, from_below)
	technic.get_or_load_node(pos)
	local meta = minetest.get_meta(pos)
	local name = minetest.get_node(pos).name

	if technic.is_tier_cable(name, tier) then
		add_new_cable_node(all_nodes, pos)
	elseif machines[name] then
		--dprint(name.." is a "..machines[name])
		if     machines[name] == technic.producer then
			add_new_cable_node(PR_nodes, pos)
		elseif machines[name] == technic.receiver then
			add_new_cable_node(RE_nodes, pos)
		elseif machines[name] == technic.producer_receiver then
			add_new_cable_node(PR_nodes, pos)
			add_new_cable_node(RE_nodes, pos)
		elseif machines[name] == "SPECIAL" and
				(pos.x ~= sw_pos.x or pos.y ~= sw_pos.y or pos.z ~= sw_pos.z) and
				from_below then
			-- Another switching station -> disable it
			add_new_cable_node(SP_nodes, pos)
			meta:set_int("active", 0)
			meta:set_string("active_pos", minetest.serialize(sw_pos))
		elseif machines[name] == technic.battery then
			add_new_cable_node(BA_nodes, pos)
		end

		meta:set_int(tier.."_EU_timeout", 2) -- Touch node
	end
end

-- Traverse a network given a list of machines and a cable type name
local traverse_network = function(PR_nodes, RE_nodes, BA_nodes, SP_nodes, all_nodes, i, machines, tier, sw_pos)
	local pos = all_nodes[i]
	local positions = {
		{x=pos.x+1, y=pos.y,   z=pos.z},
		{x=pos.x-1, y=pos.y,   z=pos.z},
		{x=pos.x,   y=pos.y+1, z=pos.z},
		{x=pos.x,   y=pos.y-1, z=pos.z},
		{x=pos.x,   y=pos.y,   z=pos.z+1},
		{x=pos.x,   y=pos.y,   z=pos.z-1}}
	--print("ON")
	for i, cur_pos in pairs(positions) do
		check_node_subp(PR_nodes, RE_nodes, BA_nodes, SP_nodes, all_nodes, cur_pos, machines, tier, sw_pos, i == 3)
	end
end

local touch_nodes = function(list, tier)
	for _, pos in ipairs(list) do
		local meta = minetest.get_meta(pos)
		meta:set_int(tier.."_EU_timeout", 2) -- Touch node
	end
end

local get_network = function(sw_pos, pos1, tier)
	local cached = technic.networks[minetest.hash_node_position(pos1)]
	if cached and cached.tier == tier then
		touch_nodes(cached.PR_nodes, tier)
		touch_nodes(cached.BA_nodes, tier)
		touch_nodes(cached.RE_nodes, tier)
		for _, pos in ipairs(cached.SP_nodes) do
			local meta = minetest.get_meta(pos)
			meta:set_int("active", 0)
			meta:set_string("active_pos", minetest.serialize(sw_pos))
		end
		return cached.PR_nodes, cached.BA_nodes, cached.RE_nodes
	end
	local i = 1
	local PR_nodes = {}
	local BA_nodes = {}
	local RE_nodes = {}
	local SP_nodes = {}
	local all_nodes = {pos1}
	repeat
		traverse_network(PR_nodes, RE_nodes, BA_nodes, SP_nodes, all_nodes,
				i, technic.machines[tier], tier, sw_pos)
		i = i + 1
	until all_nodes[i] == nil
	technic.networks[minetest.hash_node_position(pos1)] = {tier = tier, PR_nodes = PR_nodes,
			RE_nodes = RE_nodes, BA_nodes = BA_nodes, SP_nodes = SP_nodes}
	return PR_nodes, BA_nodes, RE_nodes
end

-----------------------------------------------
-- The action code for the switching station --
-----------------------------------------------
minetest.register_abm({
	nodenames = {"technic:switching_station"},
	label = "Switching Station", -- allows the mtt profiler to profile this abm individually
	interval   = 1,
	chance     = 1,
	action = function(pos, node, active_object_count, active_object_count_wider)
		local meta             = minetest.get_meta(pos)
		local meta1            = nil
		local pos1             = {}
		local PR_EU            = 0 -- EUs from PR nodes
		local BA_PR_EU         = 0 -- EUs from BA nodes (discharching)
		local BA_RE_EU         = 0 -- EUs to BA nodes (charging)
		local RE_EU            = 0 -- EUs to RE nodes

		local tier      = ""
		local PR_nodes
		local BA_nodes
		local RE_nodes
		local machine_name = S("Switching Station")

		if meta:get_int("active") ~= 1 then
			meta:set_int("active", 1)
			local active_pos = minetest.deserialize(meta:get_string("active_pos"))
			if active_pos then
				local meta1 = minetest.get_meta(active_pos)
				meta:set_string("infotext", S("%s (Slave)"):format(meta1:get_string("infotext")))
			end
			return
		end
		
		-- Which kind of network are we on:
		pos1 = {x=pos.x, y=pos.y-1, z=pos.z}

		local name = minetest.get_node(pos1).name
		local tier = technic.get_cable_tier(name)
		if tier then
			PR_nodes, BA_nodes, RE_nodes = get_network(pos, pos1, tier)
		else
			--dprint("Not connected to a network")
			meta:set_string("infotext", S("%s Has No Network"):format(machine_name))
			return
		end
		
		-- Run all the nodes
		local function run_nodes(list)
			for _, pos2 in ipairs(list) do
				technic.get_or_load_node(pos2)
				local node2 = minetest.get_node(pos2)
				local nodedef
				if node2 and node2.name then
					nodedef = minetest.registered_nodes[node2.name]
				end
				if nodedef and nodedef.technic_run then
					nodedef.technic_run(pos2, node2)
				end
			end
		end
		
		run_nodes(PR_nodes)
		run_nodes(RE_nodes)
		run_nodes(BA_nodes)

		-- Strings for the meta data
		local eu_demand_str    = tier.."_EU_demand"
		local eu_input_str     = tier.."_EU_input"
		local eu_supply_str    = tier.."_EU_supply"

		-- Distribute charge equally across multiple batteries.
		local charge_total = 0
		local battery_count = 0

		for n, pos1 in pairs(BA_nodes) do
			meta1 = minetest.get_meta(pos1)
			local charge = meta1:get_int("internal_EU_charge")

			if (meta1:get_int(eu_demand_str) ~= 0) then
				charge_total = charge_total + charge
				battery_count = battery_count + 1
			end
		end

		local charge_distributed = math.floor(charge_total / battery_count)

		for n, pos1 in pairs(BA_nodes) do
			meta1 = minetest.get_meta(pos1)

			if (meta1:get_int(eu_demand_str) ~= 0) then
				meta1:set_int("internal_EU_charge", charge_distributed)
			end
		end

		-- Get all the power from the PR nodes
		local PR_eu_supply = 0 -- Total power
		for _, pos1 in pairs(PR_nodes) do
			meta1 = minetest.get_meta(pos1)
			PR_eu_supply = PR_eu_supply + meta1:get_int(eu_supply_str)
		end
		--dprint("Total PR supply:"..PR_eu_supply)

		-- Get all the demand from the RE nodes
		local RE_eu_demand = 0
		for _, pos1 in pairs(RE_nodes) do
			meta1 = minetest.get_meta(pos1)
			RE_eu_demand = RE_eu_demand + meta1:get_int(eu_demand_str)
		end
		--dprint("Total RE demand:"..RE_eu_demand)

		-- Get all the power from the BA nodes
		local BA_eu_supply = 0
		for _, pos1 in pairs(BA_nodes) do
			meta1 = minetest.get_meta(pos1)
			BA_eu_supply = BA_eu_supply + meta1:get_int(eu_supply_str)
		end
		--dprint("Total BA supply:"..BA_eu_supply)

		-- Get all the demand from the BA nodes
		local BA_eu_demand = 0
		for _, pos1 in pairs(BA_nodes) do
			meta1 = minetest.get_meta(pos1)
			BA_eu_demand = BA_eu_demand + meta1:get_int(eu_demand_str)
		end
		--dprint("Total BA demand:"..BA_eu_demand)

		meta:set_string("infotext",
				S("@1. Supply: @2 Demand: @3",
				machine_name, technic.pretty_num(PR_eu_supply), technic.pretty_num(RE_eu_demand)))

		-- If the PR supply is enough for the RE demand supply them all
		if PR_eu_supply >= RE_eu_demand then
		--dprint("PR_eu_supply"..PR_eu_supply.." >= RE_eu_demand"..RE_eu_demand)
			for _, pos1 in pairs(RE_nodes) do
				meta1 = minetest.get_meta(pos1)
				local eu_demand = meta1:get_int(eu_demand_str)
				meta1:set_int(eu_input_str, eu_demand)
			end
			-- We have a surplus, so distribute the rest equally to the BA nodes
			-- Let's calculate the factor of the demand
			PR_eu_supply = PR_eu_supply - RE_eu_demand
			local charge_factor = 0 -- Assume all batteries fully charged
			if BA_eu_demand > 0 then
				charge_factor = PR_eu_supply / BA_eu_demand
			end
			for n, pos1 in pairs(BA_nodes) do
				meta1 = minetest.get_meta(pos1)
				local eu_demand = meta1:get_int(eu_demand_str)
				meta1:set_int(eu_input_str, math.floor(eu_demand * charge_factor))
				--dprint("Charging battery:"..math.floor(eu_demand*charge_factor))
			end
			return
		end

		-- If the PR supply is not enough for the RE demand we will discharge the batteries too
		if PR_eu_supply + BA_eu_supply >= RE_eu_demand then
			--dprint("PR_eu_supply "..PR_eu_supply.."+BA_eu_supply "..BA_eu_supply.." >= RE_eu_demand"..RE_eu_demand)
			for _, pos1 in pairs(RE_nodes) do
				meta1  = minetest.get_meta(pos1)
				local eu_demand = meta1:get_int(eu_demand_str)
				meta1:set_int(eu_input_str, eu_demand)
			end
			-- We have a deficit, so distribute to the BA nodes
			-- Let's calculate the factor of the supply
			local charge_factor = 0 -- Assume all batteries depleted
			if BA_eu_supply > 0 then
				charge_factor = (PR_eu_supply - RE_eu_demand) / BA_eu_supply
			end
			for n,pos1 in pairs(BA_nodes) do
				meta1 = minetest.get_meta(pos1)
				local eu_supply = meta1:get_int(eu_supply_str)
				meta1:set_int(eu_input_str, math.floor(eu_supply * charge_factor))
				--dprint("Discharging battery:"..math.floor(eu_supply*charge_factor))
			end
			return
		end

		-- If the PR+BA supply is not enough for the RE demand: Power only the batteries
		local charge_factor = 0 -- Assume all batteries fully charged
		if BA_eu_demand > 0 then
			charge_factor = PR_eu_supply / BA_eu_demand
		end
		for n, pos1 in pairs(BA_nodes) do
			meta1 = minetest.get_meta(pos1)
			local eu_demand = meta1:get_int(eu_demand_str)
			meta1:set_int(eu_input_str, math.floor(eu_demand * charge_factor))
		end
		for n, pos1 in pairs(RE_nodes) do
			meta1 = minetest.get_meta(pos1)
			meta1:set_int(eu_input_str, 0)
		end
	end,
})

-- Timeout ABM
-- Timeout for a node in case it was disconnected from the network
-- A node must be touched by the station continuously in order to function
local function switching_station_timeout_count(pos, tier)
	local meta = minetest.get_meta(pos)
	local timeout = meta:get_int(tier.."_EU_timeout")
	if timeout <= 0 then
		meta:set_int(tier.."_EU_input", 0) -- Not needed anymore <-- actually, it is for supply converter
		return true
	else
		meta:set_int(tier.."_EU_timeout", timeout - 1)
		return false
	end
end
minetest.register_abm({
	nodenames = {"group:technic_machine"},
	interval   = 1,
	chance     = 1,
	action = function(pos, node, active_object_count, active_object_count_wider)
		for tier, machines in pairs(technic.machines) do
			if machines[node.name] and switching_station_timeout_count(pos, tier) then
				local nodedef = minetest.registered_nodes[node.name]
				if nodedef and nodedef.technic_disabled_machine_name then
					node.name = nodedef.technic_disabled_machine_name
					minetest.swap_node(pos, node)
				elseif nodedef and nodedef.technic_on_disable then
					nodedef.technic_on_disable(pos, node)
				end
				if nodedef then
					local meta = minetest.get_meta(pos)
					meta:set_string("infotext", S("%s Has No Network"):format(nodedef.description))
				end
			end
		end
	end,
})

for tier, machines in pairs(technic.machines) do
	-- SPECIAL will not be traversed
	technic.register_machine(tier, "technic:switching_station", "SPECIAL")
end